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We study the effects of time-delayed feedback on chaotic systems where the delay time is bastdbed
case@ and varying(dynamic casgin time. For the static case, typical phase coherent and incoherent chaotic
oscillators are investigated. Detailed phase diagrams are investigated in the parameter space of feedback gain
(K) and delay time 7). Linear stability analysis, by assuming the time-delayed perturbation, var@bwisere
\ is the eigenvalue, gives the boundaries of the stability islands and critical feedback(l§girfer both
Réssler oscillators and Lorenz oscillators. We also found that the stability island are found when the delay time
is aboutr:(n+%)T, wheren is an integer and is the average period of the chaotic oscillator. It is shown that
these analytical predictions agree well with the numerical results. For the dynamic case, we investigate Rossler
oscillator with periodically modulated delay time. Stability regimes are found for parameter space of feedback
gain and modulation frequency in which it was impossible to be stabilized for a fixed delay time. We also trace
the detailed routes to the stability near the island boundaries for both cases by investigating bifurcation
diagrams.
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I. INTRODUCTION tors[12]. It has been reported that the amplitude of the time-

delay coupled limit-cycle oscillators can shrink to zero at the

The time-delayed chaotic systems have attracted much af)'roper coupling strength and delay tirf8]. This phenom-

tention recently since the delay time is inevitable in natureenon, named amplitude death, which is defined as the cessa-

due to th? finite propagatipn speed. It is well known that thetion of oscillation of two or more coupled systems as a re-
effect of time delay is mainly twofold. On the one hand, theg, ;s of their interaction, was demonstrated in experiment

delay time on a low dimensional chaotic system increases tr\?/ith coupled electronic circuit§23] and coupled thermo-

embedding (]:ciirrr:ension and the numlbe.r ?f %osi'ﬂve Lyapunoy, ica| oscillators[24]. The effect of distributed time delay
exponents of the system. As a result, it leads the system t0g. < 5154 studied and reported in the context of coupled limit-

hyperchgotic on¢1-10. On the other hand, thg .time delay cycle oscillators[25]. The impact of time-delayed self-
on chaotic system also suppresses the _chaotl_c|ty of the SYfEedback on the limit-cycle oscillator was also studj2d].

tem, €.g., control to the unstable periodic orbits of the chawyg yagyits show that time-delayed self-feedback also leads
otic trajectory[11], the stabilization of the unstable fixed the system to steady state, which is similar to amplitude

point (control to steady stateand amplitude death phenom- death phenomenon, for a certain value of delay time and
enon[12,13. In this study, we concentrate on the latter CaS€qadback gain. '

singe it islpracticr?lly ”.‘(;’(;f usfeflﬁl' : h Lord One notable feature of the time-delayed effect is that am-
s early as the middle of the nineteenth century Lord. 46 death can occur even if the natural frequencies of the
Raylelgh obs_erved th_e suppression of _OSC'"at'mS _Of interac imit-cycle oscillators are identical, in contrast to the case
ng syst.errr]]s n tvsvp S|der;by-5|gg str?ndmg organh plpgs of theithout time-delay in which broad distributions in the natu-
same pitch{14]. Ince then, this phenomenon has been reg,, frequencies of the oscillators are indispensable to ampli-
ferred to agjuenching effeabr oscillation deathlt is known tude death. Despite the fact that many studies have been

that when the coupling strength is sufficiently strong and thedone on the amplitude death phenomenon with time-delayed

distribution of the natural frequencies of the oscillators IScoupling so far, most of the studies were focused on limit-
sufficiently broad, the amplitude of the oscillators can be

q 45-17. R . th h cycle oscillators. In a broad sense, the amplitude death phe-
suppressed to zefd5-17. Recently, the same phenomenon o641 is quite similar to the problems of control to steady

was observed in diffusively coupled chaotic oscillators wheng o« i o an unstable fixed point, since a simple homeomor-
the coupling strength and the frequency detuning were suffisyis i, “aivays can transform an unstable fixed point to the
ciently large[18-20. The phenomenon is also reported in oiqin Many studieg27-31 have been done on the control
inhomogeneous oscillating medium by the effect of stirfingy, | staple periodic orbits in the context of delay time since
[21] and even in small-world networl{.§2].. the pioneering work of Pyragas was published in 1832.
Recently, the _phenomenon of o;cﬂlgtpn .death has .beeﬂecently the impact of time-delayed feedback was studied

focused on the time-delayed coupling in limit-cycle oscilla- both numerically{33] and experimentally34]. In Ref. [33],

the authors showed that control to steady state as well as

unstable periodic orbits is possible for an autonomous sys-

*Electronic address: chmkim@mail.paichai.ac.kr tem with Lorenz-like chaos, i.e., a single mode laser.
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This paper is organized as follows. In Sec. Il, we have !
investigated the self-feedback effect of static time delay on L
the Rossler and the Lorenz oscillators, which are the typical ||
coherent and incoherent chaotic oscillators. By investigating
linear stability near the unstable fixed point of the Réssler® [
oscillator, we have obtained stability islands regions in the o6
parameter space of feedback gain and delay time, and corz |
firmed them numerically. In Sec. Ill, we study dynamic time §
delay feedback effect on the Réssler oscillator. The stability§0'4_
parameter regimes are shown. Finally, we conclude in SecH
IV. 02
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A. Coherent chaotic oscillator: Rossler oscillator
For the first example, we study the Rossler oscillator, FIG. 1. Phase diagram of the time-delayed feedback Réssler
which is a typical coherent chaotic oscillator, to investigateoscillator. The solid line is the analytically obtained boundary of the
the amplitude death phenomenon. The time-delayed feedtability islandgwhite regiong. Other regions are obtained numeri-

back is introduced as follows: cally. Notice that the islands are surrounded by the region of limit
) cycle. LC and QP represent limit cycle and quasiperiodic region,
X=-woy - z+K[x(t—-7) - x(1)], respectively.
y = wex+ay+K[y(t-7) - y(®)], we can estimate the critical feedback g#ip below which
stabilization of the fixed point cannot be achieved. The rela-
Z=b+z(x—c)+K[z(t—7) —z(t)], (1) tion is

where 7 is the delay timeK is the feedback gain, and the 1

parameters, b, ¢, and wy are 0.15, 0.2, 10.0, and 1.0, re- Ke= ERe()\O), (4)
spectively. Assuming the linear perturbation vag¥swhere

\ is the eigenvalue, we obtained the following equationin the present casey,~0.076, thereforeK.~0.038. The
through linear stability analysis of E¢l) near the unstable analytical result ofk. agrees well with the numerical one

fixed point of the unperturbed oscillator: (see Fig. 1
We also numerically studied Edql) in the parameter
A -1 -1 space of feedback gain and delay time. The result is shown in
1 a+A 0 X = \X, (2) Fig. 1. Notice that the stability islands are almost exactly
z 0 X-C+A matched with the analytically obtained boundarigslid

lines). In this phase diagram, all three stability islands are
where A=K(e™"-1), x=(xy 2", X; and z; are the coordi- surrounded by limit cycle regions. This implies that the sta-
nates of the unstable fixed point, given by=(c  bility is developed from the limit cycle through Hopf bifur-
—\c?-4ab)/2, and z=(c—+c*-4ab)/2a. From the above cation. Outside the limit cycle regions a period-2 or quasip-
equation, we obtained the characteristic eigenvalue equaticgriodic orbit appears. We also found period-4, higher-order

that is given as follows: periodic regions, and a small chaotic regime outside the
period-2 orbit.
(Xp-ctA-K-NI(A-K-M@+A-K-N+1] More detailed regimes of motion can be explored by bi-
-z@a+A-K-1)=0. (3) furcation diagrams for a fixed feedback ganas the delay

time varies. Figure 2 shows bifurcation diagrams #or

On the boundaries of the stability islands, the eigenvalue-g 3 andk=0.8. We have taken the positiyevalues when
A become pure imaginary=is. Equation(3) implies two  the trajectory passes=0.0 on(x,y) space. Figure @) is the
equations. The boundaries of the stability islands can be okiagram fromr=0.0 to 7=0.8 for K=0.8 as the delay time
tained from the equatiofi(K,)=0 by eliminating8. The  increases. The figure shows that chaos transits to a limit
solid lines in Fig. 1 are the result of this linear stability cycle through inverse period-doubling bifurcation and the
aqaly3|s. We have found only three islands arourdn |imit cycle transits to steady state. In the bifurcation diagram,
+§)T (n=0,1,2 for given system parameters of the Rosslerwe can find periodic windows, chaos, and higher order peri-
case, wherd is the period corresponding to the natural fre- odicity. Figure 2b) is the diagram fromr=4.0 to 7=6.0 for
guencywq. The size of the island is reduced as the delay timeK=0.8. The figure shows that the stability regime develops
increases. We have noticed that the perburbation #&rim  to limit cycles. On further increase of the delay time, the
Eq. (2) appears only on the diagonal part, which means thdimit cycle develops to quasiperiodicity.
eigenvalue\y of the unperturbed oscillator is closely related  The bifurcation diagram shown in Fig(@ is from 7
to the eigenvalué. of the perturbed one. From this relation =8.0 to 11.0 forK=0.3. In this figure, as the delay time
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oscillator in the parameter space of delay time and feedback gain.

FIG. 2. Bifurcation diagrams depending on the delay time near(_b; SBt'fourgag'?Or:nggSra_F?]e zi"éh;aj(e:%isﬁ'mear\éatrr:isanf;??_
the stability islands{a) and (b) are for K=0.8 and(c) is for K ;ali obtaiﬁed boanc.zla.ries of the islands Whit(:)re ions, LC gnd HC
=0.3. These figures show the detailed route to stability islands for & y - . ' 9 T
givenkK. represent stabilitysteady state limit cycle, and hysteresis crisis

regimes, respectively.

increases, the amplitude of the limit cycle gradually disap- o o
pears around=8.8, which means it has made the transition ™ 0-695 th_e chaotlc_S|gnaI changes to a pe”(.)d'(.: _S|gnal as
to stability. As the delay time is further increased, the dynam-s’rl()S""Sn 'ndF|'<9_'03g)- r']:'gudre ?QIC) Sh(f’WS qlrllaS'IPe_HOdlCllty fOWV
ics moves from stability region to limit cycle, further bifur- 7—>:> @nax=u. that develops from the limit cycle. We
cates to a period-2 orbit, and finally develops to a quasiperic®"firmed the quasiperiodicity from the spectral analysis and
odic region. From these bifurcation diagrams, we cantS Phase portrait.

understand that the chaotic state of the original system transitt ’;‘OF'Ce_ thlf?‘t E[he trlan3|t|tc_m ro_ll_Jr:(a to _Sﬁbt')“ty |sla(ut;teda;1y
to a limit cycle as the delay time increses. When the dela atg Is via limit cycle motion. This might be expected from

time is longer than the half period of the natural frequency, he _the ampllltude death phenomenon .Of coupled limit cycle
limit cycle transits quasiperiodic states through Hopf pifur- 0scillators, since coherent chaotic oscillators can sometimes

cation. be interpreted' as limit cyqle os_cillators with external npise,
In Fig. 3, the time series of steady state, limit cycle, and‘?‘nc_i the experimental confirmation of the phenomenon in the

quasiperiodicity are shown. As seen in Figa3 for I|m|t-cycle_ case guarantees the robustness of the phenom-

=0.855 andK =0.8 the chaotic signal converges to a constanfNoN against the small external nof3#).

value after the time-delayed feedback turned on. Here the

constant value corresponds exactly to yhealue of the un- B. Incoherent chaotic oscillator: Lorenz oscillator

stable fixed point of the R&ssler oscillator. However, when  Now it was of interest to test whether this result holds for

incoherent chaotic oscillators. We studied the Lorenz oscil-

lator as the second example. The time-delayed feedback is

applied to thez direction as follows:

20 —
10 1
0 “ !

10 x=10y - x),
-20
20 - :
o 100 y=28-y-xz
= o
-10 -
-20 .__8
20 Z=-gzExyd Klz(t-7) - z(t)]. (5)
10 &,
_18 PO g The linear stability analysis also gives boundaries of the sta-
_20 o I : \ bility islands as in the case of the Rdssler oscillator, which
0 100 200 Time 800 400 500 are shown as solid lines in Fig(a}. Total of 23 islands have

been found for given system parameter values. Numerical

FIG. 3. Time series of the time-delayed self-feedback Rossleftudy of the phase diagram in Fig(a# confirms that the
oscillator for(a) 7=0.855,(b) 7=0.655, and(c) 7=5.5 for a fixed ~boundaries of the islands are well matched with analytical
feedback gairK=0.8. Self-feedback is turned on when100.0. predictions. The figure shows a part of whole phase diagram
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that the stability regions appear when the delay time is ap-
proximately equal to(n+3)T (n=0,1,...,22, like the
Rossler oscillator, wher€ is the period that corresponds to
the average frequency of the Lorenz oscillator. As the delay
time increases the size of the island is gradually reduced, an
eventually the island disappears when the delay time exceed
14.0. X

The bifurcation diagram is shown in Fig(l over the , |
range of 2.5<7<3.5 for K=0.5. The diagram shows tre
values that are greater than 27.0 when the oscillator passe

z=0.0 on(z,2) phase space. As is shown in Figby the 1 ()
steady state, whose value at about 27.0 is exactly matched t E
that of the unstable fixed point, develops to quasiperiodicity ! | , ]

500 1000 1500

through the limit cycle on the right side as the delay time

increases. However, we can find hysteresis regions on the lei Time(sec.)

side of the islands. Betweern=2.62 and 2.67, as the delay

time increases, quasiperiodicity transits to chaos and this FIG. 5. Time series ok(t) of the periodic-time-delayed Rossler

chaotic band transits to steady state abruptlyraR.67, oscillator where its frequency and feedbaf:k gain(@yev=0.2 and

while the steady state transits to quasiperiodicityap.62 ~ 8=0.2 and(b) =0.2 ands=0.42, respectively.

as the delay time decreases. This transition is known as hys-

teresis crisig36]. delayed chaotic system was proposed to hide the delay time
It was in this way that we found the stability islands in the in a communication applicatiofi.0].

typical incoherent chaotic oscillators. One noticeable prop- More explicitly, we study the effect of periodic-time-

erty of the Lorenz oscillator in comparison with the Résslerdelayed on chaotic system is done in the following time-

case is that the stability islands is developed via hysteresidelayed Rossler oscillator:

crisis on the left hand side boundaries of the islands. In order

to check whether this behavior is typical in the case of inco- x=-y-z+Bxt-7-y)],

herent chaotic oscillators, we investigated the time-delayed

self-feedback Navier-Stokes equation, which is also consid-

ered as an incoherent chaotic oscillator. Hysteresis crisis is y=x+0.15y+ g x(t— 7 -y},

not found in this case and the stability island is developed

from the limit cycle through Hopf bifurcation. This indicates ]

that the appearance of the hysteresis region in Fig. 4 is char- z=0.2+z(x-10.0, (6)

acteristic of the time-delayed self-feedback Lorenz oscillator

rather than a typical behavior of incoherent chaotic oscillatorwhere we sew,=1 for simplicity. The time-delayed signal
Further studies on the time-delayed Réssler oscillator, ink(t—7) is fed to the variabley of the form [x(t—7)-y(1)],

which we study the different system parameter values, i.e\hich is more generic form than the previously used form in

a=0.55, b=2.0, andc=4.0, show only one small stability Sec. Il, with the feedback gaif. Throughout this numerical

island. We also found several islands in the time-delayedtudy, we keep the modulation of the delay time as

self-feedback Navier-Stokes equation and piecewise linear4.5 sinwt)+5.0.

oscillators[37]. These results imply that the size and number Figure 5 is the time series of thdt) depending on the

of the islands depends on the kind of chaotic systems as weféedback gaing and the modulation frequenay. When g

as on their system parameters. In addition, we also found @0.2 andw=0.2, thex variable still exhibits a chaotic signal

similar phenomenon in the case of time-delay coupled chaas shown in Fig. &). However, when we increaggto 0.42

otic oscillators, e.g., the Rossler and Lorenz case. for fixed w=0.2, thex variable converges to a constant value
which corresponds to the unstable fixed point of the variable
I1l. DYNAMIC TIME DELAY as shown in Fig. &). In Fig. 5b), we can see that the os-

o ~cillator generates irregular signal before the modulation is
As a model for the study of a dynamic-time-delayed im-y,ned on.

pact on chaotic systems, we consider the simple case that the \ye investigate the stability region as the feedback gain

delay time is modulated periodically. The generic equationyng the driving frequency of the delay time are varied. The

may be written as follows: dark gray regions in Fig. 6 show stability regions in the
%= FOx(t = 7) parameter space of the feedback gg@iand the driving fre-

' ' guency of delay timev. Note that we cannot observe stabil-
where 7 is the delay time that is driven such that ity region for constant delay time, i.a4=0.0. On the other
=Ty sin(wt) + 79 [10] with To< 74 (consy. Here,Toandw are  hand, when we begin to drive the delay time periodically,
the amplitude and frequency of the delay time. The periodicmany stability islands appear, where the chaotic signal col-
time-delayed signal can be fed to the system externally eithdapses to the unstable fixed point. This implies that the peri-
to a variable or to a parameter. Recently, this periodic-timeeodic driving of the delay time plays an essential role for the
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FIG. 6. The stability regions of periodic-time-delayed Rossler Time(sec)
oscillator. The dark gray region represents the stability islands. No- _ ) ) o _
tice that there is no stability regime at=0.0, i.e., for constant time FIG. 8. (3 Bifurcation diagram as the feedback gain is varied
delay. A and B are the reference points to analyze temporal behafor 2 fixed @=0.2. The solid line shows the maximal Lyapunov
iors in Fig. 7. exponent(b) and(c) are the time series of and the stroboscopi-

cally obtained return map fg8=0.39[the black arrow ina)] where
stabilization. In this sense, we may say that the periodic deduasiperiodic motions are observed. Note that the maximal
lay time modulation induces or enhances stablization of afkyapunov exponent becomes zero near this regime.

unstable fixed point. possibility that the direction of the delayed signal trajectory

In order to _understgnd_ th? mechanism 9f this pr.‘enor’”f:oincides with the direction of the Roéssler oscillator trajec-
enon, we obtain the distributions of the poirfi&t—7),X(t oy Then, the trajectory of the Réssler oscillator is pushed
—7)) when the trajectory of the Réssler oscillator passesuyt from the unstable fixed point by the delay time so that
through the Poincaré surface of section0 (x>0 andx>0)  the system cannot converge to the unstable fixed point.
at the timet for two different points in the parameter space, The detailed transition routes between the stability islands
i.e., A (B) which is outside(inside) of the stability region. can be investigated by bifurcation diagrams. Figute) 8
The results are shown in Figs(bj and 1d) where 6 is  shows a bifurcation diagram as the feedback gais varied
defined as the angle between the position of the time delayefér a fixedw=0.2. The bifurcation diagram portrays the tran-
signal (x(t-7),x(t-7)) and the Poincaré surface of section sjtion from a broad chaotic band to a fixed point@xt0.41,
x=0 (x>0). For the parameter point A, i.,ew=0.2 andB  from the fixed point to another band At 0.51 and from the
=0.2, the time-delayed signal is spread over the whole rangkand to a fixed point af=0.72. To investigate the route
of the angled. On the other hand, for Rw=0.2 andB  more closely, we have calculated the maximal Lyapunov ex-
=0.42, the distribution has a relatively sharp peak aroundponent along the parameter values of the bifurcation dia-
1.57. We can understand, from the result of the periodicallygram, which is shown as a solid line in Figia@ Near the
modulated time delay Rossler case, that if the angular distrithreshold of the stability regimdsee the arrow in Fig.(@)],
bution of the delayed signal is rather coalesced in a certaia quasiperiodic motion is observédote that Lyapunov ex-
region, then the delay signal acts as a dragging force to pupponent is almost zejoThe quasiperiodicity of the trajectory
the chaotic attractor of the Rdssler oscillator to the unstablean be seen from the time series and the return mgp at
fixed point. On the contrary, when the angular distribution of=0.39 in Figs. &) and &c). The return map is obtained
the delayed signal is spread on the whole region, there is stroboscopically with frequenay by taking the values of the

W——T——T T 4 . . —
L (®) ]
2 — -
—~ 1= n
e - | | | E - . FIG. 7. The time series of(t) andx(t—7) of
= Ao 10 300 20 300 P(G)OO o o “0e 08 i periodically modulated delay time R(‘_jss_ler pscﬂ-
I T R lator [(@) and (c)] and the angular distributions
‘\:{ Bl L (d)1 the delayed signax(t—17),x(t—=7)) [(b) and (d)].
3+ — (a) and(b) are forw=0.2 andB=0.2.(c) and(d)
! l - are forw=0.2 andp=0.42.
0 ff 2+
-1 ‘ B
1 -
2 L
3 0 L | 1 | 1
100 150 200 250 300 0 02 04 06 08 1

Time(sec.) 0/2n
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X variable, which exhibits torus structuf€ig. 8c)]. This  are obtained analytically using linear stability analysis and
implies that the chaotic behavior transits to stability via qua-confirmed numerically. We also have found that these islands
siperiodicity. This quasiperiodic behavior can be also conappear when the delay time is approximately given 7y
firmed by its spectrum and autocorrelation function. :(n+%)T, wheren is integer andT is the average period of

We have also observed this stabilization of the unstablghe chaotic oscillator. From linear stability analysis, we also
fixed point in various other chaotic systems such as the Loestimate the critical feedback gain below which the steady
renz and the Navier-Stokes equations as well as the logististate cannot be achieved. Our findings imply that the time-
and the Hénon maps. Even though the system exhibits chalelayed self-feedback signal acts as a dragging force to at-
otic trajectories for fixed delay time, the stability regimes aretract the chaos trajectory to the unstable fixed point of the
observed for a periodically modulated delay time similar tooriginal chaotic oscillator which is similar to the amplitude
that of the Rossler oscillator case. death phenomenon of time-delay coupled oscillators. There-

It is interesting to note that this phenomenon does nofore chaotic motion collapses to the unstable fixed point just
depend on the specific coupling form, i.e., we can fed a sigby feeding time-delayed signals. We also observed two kinds
nal of the form[x(t)—x(t—7)] or [y(t)—x(t—7)] to the sys- of routes to the stability islantsteady statefor the Lorenz
tems externally or to a variable of the systems. Especiallycase: one is through Hopf bifurcation and the other through
when we feed x(t)—-x(t—7)] to x of the Rossler oscillator hysteresis crisis, which appear in autonomous systems. For
externally, the system converges to the unstable fixed poirthe dynamic case, we have also observed the stabilization
rapidly, where r=10.0 sifwt)+50.0. In this case, we ob- regime in the parameter space for time-delayed chaotic sys-
serve amplitude death in a wide region of €@=<10.0, tems when the delay time is driven periodically. The behav-
where «>0.2. However, for a fixed delay time a&=50.0, iors are demonstrated in the ROssler oscillator. In this sense,
the Rossler oscillator does not exhibit stabilization of thethe periodic modulation of the delay time enhances this phe-
unstable fixed pointsee Fig. 1 nomenon of the stabilization to the unstable fixed point. Fur-

ther studies on the dynamic time delay effect, e.g. chaotic or
random modulation, on chaotic systems are in progress.
IV. CONCLUSIONS
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