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We study the effects of time-delayed feedback on chaotic systems where the delay time is both fixed(static
case) and varying(dynamic case) in time. For the static case, typical phase coherent and incoherent chaotic
oscillators are investigated. Detailed phase diagrams are investigated in the parameter space of feedback gain
(K) and delay time(t). Linear stability analysis, by assuming the time-delayed perturbation, varies aselt where
l is the eigenvalue, gives the boundaries of the stability islands and critical feedback gains(Kc) for both
Rössler oscillators and Lorenz oscillators. We also found that the stability island are found when the delay time
is aboutt= sn+ 1

2
dT, wheren is an integer andT is the average period of the chaotic oscillator. It is shown that

these analytical predictions agree well with the numerical results. For the dynamic case, we investigate Rössler
oscillator with periodically modulated delay time. Stability regimes are found for parameter space of feedback
gain and modulation frequency in which it was impossible to be stabilized for a fixed delay time. We also trace
the detailed routes to the stability near the island boundaries for both cases by investigating bifurcation
diagrams.
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I. INTRODUCTION

The time-delayed chaotic systems have attracted much at-
tention recently since the delay time is inevitable in nature
due to the finite propagation speed. It is well known that the
effect of time delay is mainly twofold. On the one hand, the
delay time on a low dimensional chaotic system increases the
embedding dimension and the number of positive Lyapunov
exponents of the system. As a result, it leads the system to a
hyperchaotic one[1–10]. On the other hand, the time delay
on chaotic system also suppresses the chaoticity of the sys-
tem, e.g., control to the unstable periodic orbits of the cha-
otic trajectory [11], the stabilization of the unstable fixed
point (control to steady state), and amplitude death phenom-
enon[12,13]. In this study, we concentrate on the latter case
since it is practically more useful.

As early as the middle of the nineteenth century Lord
Rayleigh observed the suppression of oscillations of interact-
ing systems in two side-by-side standing organ pipes of the
same pitch[14]. Since then, this phenomenon has been re-
ferred to asquenching effector oscillation death.It is known
that when the coupling strength is sufficiently strong and the
distribution of the natural frequencies of the oscillators is
sufficiently broad, the amplitude of the oscillators can be
suppressed to zero[15–17]. Recently, the same phenomenon
was observed in diffusively coupled chaotic oscillators when
the coupling strength and the frequency detuning were suffi-
ciently large[18–20]. The phenomenon is also reported in
inhomogeneous oscillating medium by the effect of stirring
[21] and even in small-world networks[22].

Recently, the phenomenon of oscillation death has been
focused on the time-delayed coupling in limit-cycle oscilla-

tors [12]. It has been reported that the amplitude of the time-
delay coupled limit-cycle oscillators can shrink to zero at the
proper coupling strength and delay time[23]. This phenom-
enon, named amplitude death, which is defined as the cessa-
tion of oscillation of two or more coupled systems as a re-
sults of their interaction, was demonstrated in experiment
with coupled electronic circuits[23] and coupled thermo-
optical oscillators[24]. The effect of distributed time delay
was also studied and reported in the context of coupled limit-
cycle oscillators [25]. The impact of time-delayed self-
feedback on the limit-cycle oscillator was also studied[26].
The results show that time-delayed self-feedback also leads
the system to steady state, which is similar to amplitude
death phenomenon, for a certain value of delay time and
feedback gain.

One notable feature of the time-delayed effect is that am-
plitude death can occur even if the natural frequencies of the
limit-cycle oscillators are identical, in contrast to the case
without time-delay in which broad distributions in the natu-
ral frequencies of the oscillators are indispensable to ampli-
tude death. Despite the fact that many studies have been
done on the amplitude death phenomenon with time-delayed
coupling so far, most of the studies were focused on limit-
cycle oscillators. In a broad sense, the amplitude death phe-
nomenon is quite similar to the problems of control to steady
state, i.e., an unstable fixed point, since a simple homeomor-
phism always can transform an unstable fixed point to the
origin. Many studies[27–31] have been done on the control
to unstable periodic orbits in the context of delay time since
the pioneering work of Pyragas was published in 1992[32].
Recently the impact of time-delayed feedback was studied
both numerically[33] and experimentally[34]. In Ref. [33],
the authors showed that control to steady state as well as
unstable periodic orbits is possible for an autonomous sys-
tem with Lorenz-like chaos, i.e., a single mode laser.*Electronic address: chmkim@mail.paichai.ac.kr
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This paper is organized as follows. In Sec. II, we have
investigated the self-feedback effect of static time delay on
the Rössler and the Lorenz oscillators, which are the typical
coherent and incoherent chaotic oscillators. By investigating
linear stability near the unstable fixed point of the Rössler
oscillator, we have obtained stability islands regions in the
parameter space of feedback gain and delay time, and con-
firmed them numerically. In Sec. III, we study dynamic time
delay feedback effect on the Rössler oscillator. The stability
parameter regimes are shown. Finally, we conclude in Sec.
IV.

II. STATIC TIME DELAY

A. Coherent chaotic oscillator: Rössler oscillator

For the first example, we study the Rössler oscillator,
which is a typical coherent chaotic oscillator, to investigate
the amplitude death phenomenon. The time-delayed feed-
back is introduced as follows:

ẋ = − v0y − z+ Kfxst − td − xstdg,

ẏ = v0x + ay+ Kfyst − td − ystdg,

ż= b + zsx − cd + Kfzst − td − zstdg, s1d

wheret is the delay time,K is the feedback gain, and the
parametersa, b, c, and v0 are 0.15, 0.2, 10.0, and 1.0, re-
spectively. Assuming the linear perturbation varieselt, where
l is the eigenvalue, we obtained the following equation
through linear stability analysis of Eq.(1) near the unstable
fixed point of the unperturbed oscillator:

1A − 1 − 1

1 a + A 0

zf 0 xf − c + A
2x = lx, s2d

where A=Kse−lt−1d, x=sx y zdT, xf and zf are the coordi-
nates of the unstable fixed point, given byxf =sc
−Îc2−4abd /2, and zf =sc−Îc2−4abd /2a. From the above
equation, we obtained the characteristic eigenvalue equation
that is given as follows:

sx0 − c + A − K − ldfsA − K − ldsa + A − K − ld + 1g

− z0sa + A − K − ld = 0. s3d

On the boundaries of the stability islands, the eigenvalue
l become pure imaginary,l= ib. Equation(3) implies two
equations. The boundaries of the stability islands can be ob-
tained from the equationfsK ,td=0 by eliminatingb. The
solid lines in Fig. 1 are the result of this linear stability
analysis. We have found only three islands aroundt= sn
+ 1

2
dT sn=0,1,2d for given system parameters of the Rössler

case, whereT is the period corresponding to the natural fre-
quencyv0. The size of the island is reduced as the delay time
increases. We have noticed that the perburbation termA in
Eq. (2) appears only on the diagonal part, which means the
eigenvaluel0 of the unperturbed oscillator is closely related
to the eigenvaluel of the perturbed one. From this relation

we can estimate the critical feedback gainKc below which
stabilization of the fixed point cannot be achieved. The rela-
tion is

Kc =
1

2
Resl0d, s4d

in the present case,l0,0.076, thereforeKc,0.038. The
analytical result ofKc agrees well with the numerical one
(see Fig. 1).

We also numerically studied Eq.(1) in the parameter
space of feedback gain and delay time. The result is shown in
Fig. 1. Notice that the stability islands are almost exactly
matched with the analytically obtained boundaries(solid
lines). In this phase diagram, all three stability islands are
surrounded by limit cycle regions. This implies that the sta-
bility is developed from the limit cycle through Hopf bifur-
cation. Outside the limit cycle regions a period-2 or quasip-
eriodic orbit appears. We also found period-4, higher-order
periodic regions, and a small chaotic regime outside the
period-2 orbit.

More detailed regimes of motion can be explored by bi-
furcation diagrams for a fixed feedback gainK as the delay
time varies. Figure 2 shows bifurcation diagrams forK
=0.3 andK=0.8. We have taken the positivey values when
the trajectory passesx=0.0 onsx,yd space. Figure 2(a) is the
diagram fromt=0.0 to t=0.8 for K=0.8 as the delay time
increases. The figure shows that chaos transits to a limit
cycle through inverse period-doubling bifurcation and the
limit cycle transits to steady state. In the bifurcation diagram,
we can find periodic windows, chaos, and higher order peri-
odicity. Figure 2(b) is the diagram fromt=4.0 tot=6.0 for
K=0.8. The figure shows that the stability regime develops
to limit cycles. On further increase of the delay time, the
limit cycle develops to quasiperiodicity.

The bifurcation diagram shown in Fig. 2(c) is from t
=8.0 to 11.0 forK=0.3. In this figure, as the delay time

FIG. 1. Phase diagram of the time-delayed feedback Rössler
oscillator. The solid line is the analytically obtained boundary of the
stability islands(white regions). Other regions are obtained numeri-
cally. Notice that the islands are surrounded by the region of limit
cycle. LC and QP represent limit cycle and quasiperiodic region,
respectively.
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increases, the amplitude of the limit cycle gradually disap-
pears aroundt=8.8, which means it has made the transition
to stability. As the delay time is further increased, the dynam-
ics moves from stability region to limit cycle, further bifur-
cates to a period-2 orbit, and finally develops to a quasiperi-
odic region. From these bifurcation diagrams, we can
understand that the chaotic state of the original system transit
to a limit cycle as the delay time increses. When the delay
time is longer than the half period of the natural frequency, a
limit cycle transits quasiperiodic states through Hopf bifur-
cation.

In Fig. 3, the time series of steady state, limit cycle, and
quasiperiodicity are shown. As seen in Fig. 3(a), for t
=0.855 andK=0.8 the chaotic signal converges to a constant
value after the time-delayed feedback turned on. Here the
constant value corresponds exactly to they value of the un-
stable fixed point of the Rössler oscillator. However, when

t=0.655 the chaotic signal changes to a periodic signal as
shown in Fig. 3(b). Figure 3(c) shows quasiperiodicity for
t=5.5 andK=0.8 that develops from the limit cycle. We
confirmed the quasiperiodicity from the spectral analysis and
its phase portrait.

Notice that the transition route to stability island(steady
state) is via limit cycle motion. This might be expected from
the the amplitude death phenomenon of coupled limit cycle
oscillators, since coherent chaotic oscillators can sometimes
be interpreted as limit cycle oscillators with external noise,
and the experimental confirmation of the phenomenon in the
limit-cycle case guarantees the robustness of the phenom-
enon against the small external noise[35].

B. Incoherent chaotic oscillator: Lorenz oscillator

Now, it was of interest to test whether this result holds for
incoherent chaotic oscillators. We studied the Lorenz oscil-
lator as the second example. The time-delayed feedback is
applied to thez direction as follows:

ẋ = 10sy − xd,

ẏ = 28x − y − xz,

ż= −
8

3
z+ xy+ Kfzst − td − zstdg. s5d

The linear stability analysis also gives boundaries of the sta-
bility islands as in the case of the Rössler oscillator, which
are shown as solid lines in Fig. 4(a). Total of 23 islands have
been found for given system parameter values. Numerical
study of the phase diagram in Fig. 4(a) confirms that the
boundaries of the islands are well matched with analytical
predictions. The figure shows a part of whole phase diagram

FIG. 2. Bifurcation diagrams depending on the delay time near
the stability islands;(a) and (b) are for K=0.8 and(c) is for K
=0.3. These figures show the detailed route to stability islands for a
given K.

FIG. 3. Time series of the time-delayed self-feedback Rössler
oscillator for (a) t=0.855,(b) t=0.655, and(c) t=5.5 for a fixed
feedback gainK=0.8. Self-feedback is turned on whent=100.0.

FIG. 4. (a) Phase diagram of time-delayed self-feedback Lorenz
oscillator in the parameter space of delay time and feedback gain.
(b) Bifurcation diagram as the delay time varies fromt
=2.5 to 3.5 forK=0.5. The solid black lines in(a) are the analyti-
cally obtained boundaries of the islands. White regions, LC, and HC
represent stability(steady state), limit cycle, and hysteresis crisis
regimes, respectively.
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that the stability regions appear when the delay time is ap-
proximately equal to sn+ 1

2
dT sn=0,1, . . . ,22d, like the

Rössler oscillator, whereT is the period that corresponds to
the average frequency of the Lorenz oscillator. As the delay
time increases the size of the island is gradually reduced, and
eventually the island disappears when the delay time exceeds
14.0.

The bifurcation diagram is shown in Fig. 4(b) over the
range of 2.5,t,3.5 for K=0.5. The diagram shows thez
values that are greater than 27.0 when the oscillator passes
ż=0.0 on sz, żd phase space. As is shown in Fig. 4(b), the
steady state, whose value at about 27.0 is exactly matched to
that of the unstable fixed point, develops to quasiperiodicity
through the limit cycle on the right side as the delay time
increases. However, we can find hysteresis regions on the left
side of the islands. Betweent=2.62 and 2.67, as the delay
time increases, quasiperiodicity transits to chaos and this
chaotic band transits to steady state abruptly att=2.67,
while the steady state transits to quasiperiodicity att=2.62
as the delay time decreases. This transition is known as hys-
teresis crisis[36].

It was in this way that we found the stability islands in the
typical incoherent chaotic oscillators. One noticeable prop-
erty of the Lorenz oscillator in comparison with the Rössler
case is that the stability islands is developed via hysteresis
crisis on the left hand side boundaries of the islands. In order
to check whether this behavior is typical in the case of inco-
herent chaotic oscillators, we investigated the time-delayed
self-feedback Navier-Stokes equation, which is also consid-
ered as an incoherent chaotic oscillator. Hysteresis crisis is
not found in this case and the stability island is developed
from the limit cycle through Hopf bifurcation. This indicates
that the appearance of the hysteresis region in Fig. 4 is char-
acteristic of the time-delayed self-feedback Lorenz oscillator
rather than a typical behavior of incoherent chaotic oscillator.

Further studies on the time-delayed Rössler oscillator, in
which we study the different system parameter values, i.e.,
a=0.55, b=2.0, andc=4.0, show only one small stability
island. We also found several islands in the time-delayed
self-feedback Navier-Stokes equation and piecewise linear
oscillators[37]. These results imply that the size and number
of the islands depends on the kind of chaotic systems as well
as on their system parameters. In addition, we also found a
similar phenomenon in the case of time-delay coupled cha-
otic oscillators, e.g., the Rössler and Lorenz case.

III. DYNAMIC TIME DELAY

As a model for the study of a dynamic-time-delayed im-
pact on chaotic systems, we consider the simple case that the
delay time is modulated periodically. The generic equation
may be written as follows:

ẋ = F„x,xst − td…,

where t is the delay time that is driven such thatt
=T0 sinsvtd+t0 [10] with T0øt0 (const). Here,T0 andv are
the amplitude and frequency of the delay time. The periodic-
time-delayed signal can be fed to the system externally either
to a variable or to a parameter. Recently, this periodic-time-

delayed chaotic system was proposed to hide the delay time
in a communication application[10].

More explicitly, we study the effect of periodic-time-
delayed on chaotic system is done in the following time-
delayed Rössler oscillator:

ẋ = − y − z+ bfxst − td − ystdg,

ẏ = x + 0.15hy + bfxst − td − ystdgj,

ż= 0.2 +zsx − 10.0d, s6d

where we setv0=1 for simplicity. The time-delayed signal
xst−td is fed to the variabley of the form fxst−td−ystdg,
which is more generic form than the previously used form in
Sec. II, with the feedback gainb. Throughout this numerical
study, we keep the modulation of the delay time ast
=4.5 sinsvtd+5.0.

Figure 5 is the time series of thexstd depending on the
feedback gainb and the modulation frequencyv. When b
=0.2 andv=0.2, thex variable still exhibits a chaotic signal
as shown in Fig. 5(a). However, when we increaseb to 0.42
for fixed v=0.2, thex variable converges to a constant value
which corresponds to the unstable fixed point of the variable
as shown in Fig. 5(b). In Fig. 5(b), we can see that the os-
cillator generates irregular signal before the modulation is
turned on.

We investigate the stability region as the feedback gain
and the driving frequency of the delay time are varied. The
dark gray regions in Fig. 6 show stability regions in the
parameter space of the feedback gainb and the driving fre-
quency of delay timev. Note that we cannot observe stabil-
ity region for constant delay time, i.e.,v=0.0. On the other
hand, when we begin to drive the delay time periodically,
many stability islands appear, where the chaotic signal col-
lapses to the unstable fixed point. This implies that the peri-
odic driving of the delay time plays an essential role for the

FIG. 5. Time series ofxstd of the periodic-time-delayed Rössler
oscillator where its frequency and feedback gain are(a) v=0.2 and
b=0.2 and(b) v=0.2 andb=0.42, respectively.
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stabilization. In this sense, we may say that the periodic de-
lay time modulation induces or enhances stablization of an
unstable fixed point.

In order to understand the mechanism of this phenom-
enon, we obtain the distributions of the points(xst−td , ẋst
−td) when the trajectory of the Rössler oscillator passes
through the Poincaré surface of sectionx=0 (x.0 andẋ.0)
at the timet for two different points in the parameter space,
i.e., A sBd which is outside(inside) of the stability region.
The results are shown in Figs. 7(b) and 7(d) where u is
defined as the angle between the position of the time delayed
signal (xst−td , ẋst−td) and the Poincaré surface of section
x=0 sx.0d. For the parameter point A, i.e.,v=0.2 andb
=0.2, the time-delayed signal is spread over the whole range
of the angleu. On the other hand, for B(v=0.2 andb
=0.42), the distribution has a relatively sharp peak around
1.5p. We can understand, from the result of the periodically
modulated time delay Rössler case, that if the angular distri-
bution of the delayed signal is rather coalesced in a certain
region, then the delay signal acts as a dragging force to pull
the chaotic attractor of the Rössler oscillator to the unstable
fixed point. On the contrary, when the angular distribution of
the delayed signal is spread on the whole region, there is a

possibility that the direction of the delayed signal trajectory
coincides with the direction of the Rössler oscillator trajec-
tory. Then, the trajectory of the Rössler oscillator is pushed
out from the unstable fixed point by the delay time so that
the system cannot converge to the unstable fixed point.

The detailed transition routes between the stability islands
can be investigated by bifurcation diagrams. Figure 8(a)
shows a bifurcation diagram as the feedback gainb is varied
for a fixedv=0.2. The bifurcation diagram portrays the tran-
sition from a broad chaotic band to a fixed point atb=0.41,
from the fixed point to another band atb=0.51 and from the
band to a fixed point atb=0.72. To investigate the route
more closely, we have calculated the maximal Lyapunov ex-
ponent along the parameter values of the bifurcation dia-
gram, which is shown as a solid line in Fig. 8(a). Near the
threshold of the stability regimes[see the arrow in Fig. 8(a)],
a quasiperiodic motion is observed(note that Lyapunov ex-
ponent is almost zero). The quasiperiodicity of the trajectory
can be seen from the time series and the return map atb
=0.39 in Figs. 8(b) and 8(c). The return map is obtained
stroboscopically with frequencyv by taking the values of the

FIG. 6. The stability regions of periodic-time-delayed Rössler
oscillator. The dark gray region represents the stability islands. No-
tice that there is no stability regime atv=0.0, i.e., for constant time
delay. A and B are the reference points to analyze temporal behav-
iors in Fig. 7.

FIG. 7. The time series ofxstd andxst−td of
periodically modulated delay time Rössler oscil-
lator [(a) and (c)] and the angular distributions
the delayed signal(xst−td , ẋst−td) [(b) and (d)].
(a) and(b) are forv=0.2 andb=0.2. (c) and(d)
are forv=0.2 andb=0.42.

FIG. 8. (a) Bifurcation diagram as the feedback gain is varied
for a fixed v=0.2. The solid line shows the maximal Lyapunov
exponent.(b) and (c) are the time series ofx and the stroboscopi-
cally obtained return map forb=0.39[the black arrow in(a)] where
quasiperiodic motions are observed. Note that the maximal
Lyapunov exponent becomes zero near this regime.
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x variable, which exhibits torus structure[Fig. 8(c)]. This
implies that the chaotic behavior transits to stability via qua-
siperiodicity. This quasiperiodic behavior can be also con-
firmed by its spectrum and autocorrelation function.

We have also observed this stabilization of the unstable
fixed point in various other chaotic systems such as the Lo-
renz and the Navier-Stokes equations as well as the logistic
and the Hénon maps. Even though the system exhibits cha-
otic trajectories for fixed delay time, the stability regimes are
observed for a periodically modulated delay time similar to
that of the Rössler oscillator case.

It is interesting to note that this phenomenon does not
depend on the specific coupling form, i.e., we can fed a sig-
nal of the formfxstd−xst−tdg or fystd−xst−tdg to the sys-
tems externally or to a variable of the systems. Especially,
when we feedfxstd−xst−tdg to ẋ of the Rössler oscillator
externally, the system converges to the unstable fixed point
rapidly, wheret=10.0 sinsvtd+50.0. In this case, we ob-
serve amplitude death in a wide region of 0.0,vø10.0,
wherea.0.2. However, for a fixed delay time att=50.0,
the Rössler oscillator does not exhibit stabilization of the
unstable fixed point(see Fig. 1).

IV. CONCLUSIONS

We have studied the effects of both static and dynamic
time-delayed feedback on chaotic oscillators(Rössler and the
Lorenz oscillators). For the static case, the stability islands

are obtained analytically using linear stability analysis and
confirmed numerically. We also have found that these islands
appear when the delay time is approximately given byt
= sn+ 1

2
dT, wheren is integer andT is the average period of

the chaotic oscillator. From linear stability analysis, we also
estimate the critical feedback gain below which the steady
state cannot be achieved. Our findings imply that the time-
delayed self-feedback signal acts as a dragging force to at-
tract the chaos trajectory to the unstable fixed point of the
original chaotic oscillator which is similar to the amplitude
death phenomenon of time-delay coupled oscillators. There-
fore chaotic motion collapses to the unstable fixed point just
by feeding time-delayed signals. We also observed two kinds
of routes to the stability island(steady state) for the Lorenz
case: one is through Hopf bifurcation and the other through
hysteresis crisis, which appear in autonomous systems. For
the dynamic case, we have also observed the stabilization
regime in the parameter space for time-delayed chaotic sys-
tems when the delay time is driven periodically. The behav-
iors are demonstrated in the Rössler oscillator. In this sense,
the periodic modulation of the delay time enhances this phe-
nomenon of the stabilization to the unstable fixed point. Fur-
ther studies on the dynamic time delay effect, e.g. chaotic or
random modulation, on chaotic systems are in progress.
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